Latest AI & Business News
Stay updated with the latest insights in AI and business, delivered directly to you.
-
Google Quantum AI Introduces Willow: A New State-of-the-Art Quantum Computing Chip with a Breakthrough that can Reduce Errors Exponentially
Quantum computing has long been seen as a promising avenue for advancing computational capabilities beyond those of classical systems. However, the field faces a persistent challenge: error rates. Quantum bits, or qubits, are inherently fragile, and minor disturbances can lead to computational errors. This sensitivity has limited the scalability and practical application of quantum systems.…
-
Meta AI Introduces SPDL (Scalable and Performant Data Loading): A Step Forward in AI Model Training with Thread-based Data Loading
Training AI models today isn’t just about designing better architectures—it’s also about managing data efficiently. Modern models require vast datasets and need those datasets delivered quickly to GPUs and other accelerators. The problem? Traditional data loading systems often lag behind, slowing everything down. These older systems rely heavily on process-based methods that struggle to keep…
-
제조업이 직면한 보안 위협 8가지
디지털 트랜스포메이션 속도, 복잡한 공급망, 서드파티 업체에 대한 의존도 등은 제조업계의 CISO가 대응하기 까다로운 사이버 위협 환경을 조성한다. 국가에서 후원하는 악의적 공격자와 랜섬웨어 조직의 주요 표적이 되는 경우도 있다. 제조업계는 네트워크 인프라를 현대화하면서 비용 효율적인 운영을 유지해야 하는 어려운 과제에 직면해 있다. 관리형 보안 서비스 업체 놈사이버(NormCyber) CTO 폴 크래그는 “많은 제조 시스템이 최신 보안…
-
How Fine-Tuned Large Language Models Prioritize Goal-Oriented Reasoning Over Comprehensive World Representations: Insights From the REPLACE Framework
Inspired by human cognitive processes, large language models (LLMs) possess an intriguing ability to interpret and represent abstract world states, which are specific snapshots of the situation or context (basically the environment) described in the text, such as the arrangement of objects or tasks in a virtual or real-world scenario. The research explores this potential…
-
NVIDIA’s Blackwell Showcases the Future of AI Is Water-Cooled – For Now
NVIDIA’s Blackwell processor is a game changer. It is also incredibly dense and it runs hot. Apparently, this heat doesn’t become a big problem until you have a whopping 72 of the processors in a rack, but if you get to that density, air cooling just doesn’t do it anymore, so NVIDIA has released a…
-
OpenAI Just Released Sora: The Most Awaited AI Video-Generation Tool
OpenAI has unveiled Sora, its new text-to-video generation tool, a major step forward in AI-powered content creation. However, the launch comes with a notable exception: users in the European Union and the United Kingdom won’t have access for now, highlighting ongoing challenges between innovation and regulation. Sora is OpenAI’s answer to simplifying video production. It…
-
Police Arrest UHC CEO Shooting Suspect, App Developer Luigi Mangione
Luigi Mangione, a 26-year-old graduate of the University of Pennsylvania, was apprehended on Monday after visiting a McDonald’s in Altoona, Pennsylvania.
-
BigID Expands Capabilities with New Features to Enhance Security and Compliance
BigID, a company specializing in data security, privacy, compliance, and AI-driven data management, has revealed several advancements focused on improving cloud security, enhancing compliance measures, and reinforcing data protection. The New York-based company launched Data Activity Monitoring for real-time tracking of user activity across structured and unstructured data. The goal is to empower organizations to…
-
エージェンティックAI:ビジネスにおける6つの有望なユースケース
AIエージェントの活用が注目されている。推進派は、組織全体で手動のタスクを自動化するために自律型AIエージェントを使用することのメリットを見出している。 Forresterが6月に2025年のトップ新興技術として挙げたAgentic AIは、コンテンツ生成よりも業務上の意思決定を重視することで、生成型AIをさらに一歩進めたものとなっている。このアプローチがビジネス・ワークフローに与える影響の可能性に期待して、アフラック、アトランティック・ヘルス・システム、レジェンダリー・エンターテインメント、NASAのジェット推進研究所などの組織がすでにこの技術を追及している。 CRMのリーダーであるセールスフォースは、エージェンティックAIを戦略の中心に据え、「Agentforce」を発表した。ITサービス管理の大手であるServiceNowも、AIエージェントをNowプラットフォームに追加した。マイクロソフトやその他の企業も参入している。 AIエージェントがこれほど多くの状況やプラットフォームで登場しているため、このテクノロジーに関心のある組織は、何から始めればよいのか分からなくなるかもしれない。AIの専門家によると、これまでにいくつかのユースケースが浮上している。 コンサルティングおよび税務サービスプロバイダーであるEYのグローバルイノベーションAIオフィサーであるロドリゴ・マダネス氏によると、エージェントAIはERP、CRM、ビジネスインテリジェンスシステムとスムーズに統合され、ワークフローの自動化、データ分析の管理、価値あるレポートの作成を行うという。AIエージェントは、過去の自動化技術とは異なり、リアルタイムで意思決定を行うことができるため、プロセス自動化が主なユースケースとなる。 「AIエージェントは、カスタマーサービス、サプライチェーン管理、IT運用など、これまで人的介入を必要としていた反復的な作業を自動化することができます」とマダネス氏は言う。「この技術が他と一線を画するのは、変化する状況に適応し、手作業による監視なしに予期せぬ入力に対処できる能力です」 AIの専門家が考えるAIエージェントの6つの主な用途を以下に紹介する。 ソフトウェア開発 エージェンティックAIは、AIコーディングアシスタント、つまり副操縦士を、大量のコードを書くより賢いソフトウェア開発ツールに変えることを約束している。 コーディングアシスタントはこれまで賛否両論の評価を受けてきたが、アナリスト企業ガートナーは、より賢いAIエージェントが3年以内にコードの大半を書くようになり、ほとんどのソフトウェアエンジニアがスキルを再習得する必要に迫られると予測している。 デジタル変革のアドバイザリー企業であるPublicis Sapientのエグゼクティブ・バイスプレジデント兼最高製品責任者であるシェルドン・モンテイロ氏は、「コーディングエージェントはコードを書くだけでなく、別のエージェントがコードのエラーをチェックする」と語る。 「ワークフローを自動化するDevOpsツールチェーンがすでに存在しているため、AIエージェントを追加することは自然な進化である」と彼は言う。「これらのエージェントは、コードから仕様を自律的にリバースエンジニアリングし、仕様からテストケースとコードをフォワードエンジニアリングし、一定の基準を満たす成果物を承認することで、自動化の全体的なレベルを向上させることができる」 ステロイドを投与したRPA 多くの組織がすでに、さまざまな分野における単純で反復的な作業を自動化するために、ロボットによるプロセス自動化(RPA)を利用している。Agentic AIも作業の自動化は可能だが、より高度な意思決定機能が必要なより複雑な問題にも対応できると、モンテイロ氏は言う。 「AIにより、RPAはルールベースのアクションを超えて適応性のある自律プロセスへと進化し、業務全体の効率を大幅に向上させる」と彼は言う。「この新しいツールにより、エージェントを訓練して、RPAが実行していた単純なタスクだけでなく、例外的なロジックが機能する状況の微妙な違いを理解させることも可能になる」 カスタマーサポートの自動化 企業はこれまで、簡単な顧客サービスリクエストに対応するためにシンプルなチャットボットや音声ボットを使用してきたが、エージェンティックAIにより、カスタマーサービス自動化は、いくつかのよくある質問に回答するだけでなく、より強固なサービスへと進化するだろうと、AIベースのカスタマーエクスペリエンスソリューションを提供するジェネシス社のCTO、グレン・ネザーカット氏は言う。 「私が考えるエージェンティックAIの定義は、非決定論的な理由に基づく多段階のタスクを自律的に実行する能力です」と、ネザーカット氏は言う。「人間の指示がなくても、非常に複雑で適応的な意思決定プロセスを処理できる能力です。 これらのカスタマーサービスエージェントは、小売、金融サービス、ITサービスデスクヘルプなど、さまざまな業界や機能をカバーするだろうと彼は言う。限られた数の質問に答える高度に管理されたボットではなく、AIエージェントは幅広い顧客ニーズに対して文脈を理解した回答を提供することができる。 例えば、銀行の顧客は「最も残高の多い口座からお金を引き出して、当座預金口座に移してほしい」と言うことができる。単純なチャットボットでは通常、「最も残高の多い口座」が何を意味するのか理解できないと、ネザーカット氏は言う。 「考えられるのは、実行可能なアクションのカタログを用意し、十分なインテリジェンスを備えたAIを用意することだ」と同氏は言う。「目の前にはさまざまな選択肢があり、その中から私が選んだものを使用する。ガードレールはますます複雑になるだろう」と彼は言う。 企業ワークフロー ServiceNow、Salesforce、およびエージェント型AIを採用するその他のベンダーにより、企業ワークフローは、このテクノロジーにとって最適な分野となるだろうと専門家は言う。これにより、企業は日常業務を自動化することでプロセスを合理化できる。 例えば、AIエージェントは、人間の介入なしに会議のメモをプロジェクトチケットに変換したり、需要と供給の予測に応じてサプライヤーの注文をトリガーしたりすることができると、モンテイロ氏は言う。 企業全体にわたって大手ベンダーのITツールを導入している組織は、APIでリンクする必要があるかもしれないさまざまなソリューションを使用している企業よりも優位性があるはずだと、同氏は付け加える。企業にとって、すべてのデータをプールし、情報サイロを回避することが重要になるだろう。 「CIOにとって重要なのは、『自社の業務に関する深い知識であるコンテクストストアの構築を誰に任せるか』ということです。」と彼は付け加える。「自社の業務に関する知識をすべて考えてみてください。もし、法学修士号を持つ人が、自社の業務の全体像を本当に理解していたらどうでしょうか?」 サイバーセキュリティと脅威の検出 サイバーセキュリティのプロバイダーのいくつかは、脅威を検知し、対応するためにAIエージェントを導入している。「サイバーセキュリティにおけるエージェントAIは、セキュリティや詐欺の脅威をほぼリアルタイムで自律的に検知し、対応し、軽減することさえ可能であり、潜在的な攻撃への対応時間を短縮し、全体的なセキュリティを強化します」とモンテイロ氏は言う。 さらに、AIエージェントベンダーのBeam社によると、AIエージェントは、特定の脅威や脆弱性に適応するパーソナライズされたセキュリティプロトコルを可能にする。「このエージェントによる自動化は、より強固な防御メカニズムを確保します」と同社は主張している。 また、Beam社によると、AIエージェントは日常的な作業やセキュリティ対応を自動化することで、効率性とコスト削減も実現できる。 ビジネスインテリジェンス AIエージェントが大きな影響を与えるもう一つの分野は、ビジネスインテリジェンスである。BIダッシュボードは比較的簡単に使えるが、標準カテゴリーを超える洞察を得るには、データチームが抽出作業を行う必要があることが多いと、AI搭載BIベンダーであるZenlytic社の共同創設者兼CEO、ライアン・ヤンセン氏は言う。 Agentic AI をBIソリューションと組み合わせることで、より多くの従業員が有益な分析を利用できるようになる可能性があると、同氏は言う。例えば、BI用のAIエージェントがマーケティングチームに予算の使い道についてアドバイスしたり、ナプキンに描かれた例をもとにチャートを作成したりできると、ヤンセン氏は言う。 音声入力を理解するAIエージェントは、「当社のトップ3のマーケティングチャネルは?」といった音声による質問に基づいて、ビジネスデータの洞察を生成することができる。 「それはごく自然な質問ですが、あいまいです」とヤンセン氏は言う。「チャットボットとエージェントの間に存在する違いは、そのあいまいな質問を明確化できないことです。トップとは何を意味するのでしょうか? よく構築されたエージェントであれば、『ああ、待ってください、これはあいまいです。これについては戻ってツールを使用する必要があります』と言うでしょう。 多くの組織は、エージェントAIの旅の始まりに立っているところであり、まだ発見されていない用途は数百もあるとヤンセン氏は付け加える。コーディングは詳細に重点が置かれ、時間がかかるため、コーディングエージェントは初期のユースケースであるが、現在ではコーディングを趣味とする人々がコーディングアシスタントを使用してアプリを構築している。 「最も効果的に適用できるのは、単調で多くの時間を要する作業や、細部に多くの注意を要する作業の場合である」とヤンセン氏は言う。 数十のエージェントが連携して組織化されると、企業は新たな飛躍を遂げるだろう、とヤンセン氏は付け加える。 「エージェントが実現できることについては、まだ氷山の一角にすぎません。組織がどのようなものになるのか、どのように相互作用するのか、どのように統治されるのか、まだわかっていません。しかし、今後2、3年のうちに、それらを解明できると確信しています。」
-
Yann LeCun Team’s New Research: Revolutionizing Visual Navigation with Navigation World Models
Navigation is a fundamental skill for any visually-capable organism, serving as a critical tool for survival. It enables agents to locate resources, find shelter, and avoid threats. In humans, navigation often involves mentally simulating possible future paths while accounting for constraints and alternative possibilities. However, modern robotic navigation systems are far less flexible. Current state-of-the-art…