Latest AI & Business News
Stay updated with the latest insights in AI and business, delivered directly to you.
-
‘생성형 AI 임금님은 벌거벗었다’··· 메타·애플 보고서의 신랄한 진단
기업 이사회가 생성형 AI 확산에 힘을 보태고 있다. 관련 업체의 환호 속에서 회의적인 시각의 CIO는 수적 열세를 느끼기도 한다. 하지만 애플의 보고서와 메타의 인터뷰를 통해 생성형 AI가 실제로 지자들이 주장하는 대로 많은 것을 할 수 있는 지에 대한 심각한 의문이 제기되면서 냉소적인 걱정은 이제 어느 정도 설득력을 얻게 될 것이다. 이 논쟁에는 적어도 컴퓨팅 환경…
-
Can Apple’s new AI photo ‘Clean up’ tool beat Google’s Magic Editor? For some users, yes
On my iPhone, I used these rival tools to fix the busy backgrounds of some vacation pics. Compare the respective results here.
-
칼럼 | 부상하는 클라우드 반대론, 클라우드 서비스의 도약 이끌까
여러 가지 이유로 클라우드 컴퓨팅에 반대하는 사람이 있다는 것은 분명한 사실이다. 요약하자면, 비용, 통제력 상실, ROI 부족, 데이터 프라이버시, 심지어는 모두를 열반에 이르게 하겠다고 약속한 마케팅이 불러온 노골적인 오해도 이유 중 하나다. 그러나 이런 반발이 클라우드 사용자와 서비스 업체 모두에게 긍정적인 영향을 미칠 수 있다는 사실도 분명해졌다. 이런 변화는 클라우드 시장을 개선하고 마침내 클라우드 컴퓨팅의…
-
Taipan: A Novel Hybrid Architecture that Combines Mamba-2 with Selective Attention Layers (SALs)
Transformer-based architectures have revolutionized natural language processing, delivering exceptional performance across diverse language modeling tasks. However, they still face major challenges when handling long-context sequences. The self-attention mechanism in Transformers suffers from quadratic computational complexity, and their memory requirement grows linearly with context length during inference. These factors impose practical constraints on sequence length due…
-
OpenAI Releases SimpleQA: A New AI Benchmark that Measures the Factuality of Language Models
The rise of large language models has been accompanied by significant challenges, particularly around ensuring the factuality of generated responses. One persistent issue is that these models can produce outputs that are factually incorrect or even misleading, a phenomenon often called “hallucination.” These hallucinations occur when models generate confident-sounding but incorrect or unverifiable information. Given…
-
Meta’s Next Llama AI Models Are Training on a GPU Cluster ‘Bigger Than Anything’ Else
The race for better generative AI is also a race for more computing power. On that score, according to CEO Mark Zuckerberg, Meta appears to be winning.
-
Pika 1.5 updates with three new Halloween-themed video AI Pikaffects
The three new Pikaffects in time for Halloween are levitate, eye pop, and decapitate — all of which do what they sound like.Read More
-
動画インタビュー:レノボのエバンジェリストが語る日本企業のハイブリッドワーク成功の秘訣
昨今、多国籍企業も含めてオフィス回帰の動きが進んでいる。一方、日本では生産性と個人のパフォーマンス向上のために、オフィスとリモートの両方で働けるハイブリッドワークが求められている。 企業が競争力を高め、優秀な人材を惹きつけるためには、従業員がどこにいても働ける柔軟なワークスタイルが必要だ。ありがたいことに、多くの企業がこの必要性を認識している。レノボ・ジャパンの「ハイブリッドワーク調査2024」によると、企業や組織の40%がリモートシステムを導入しており、リモートワークの対象者の86%が、従業員が働く場所を選べるようにしている。 企業はすでにリモートワークのメリットを実感しており、競争力を維持し、優秀な人材を引きつけ、確保し続けるために、リアルワークとデジタルワークを組み合わせた新しいワークスタイルを模索している。 そして、2024年はAIが普及する年になるかもしれない。 IDC Japanの「国内AIシステム市場予測」によると、生成AIのビジネス用途が進み、2028年までの年平均成長率は30%で推移している。用途はテキスト、画像、動画生成からプログラミングコードの生成まで多岐にわたる。特に、金融業、製造業、流通サービス業において、生成AIを活用した実証実験が多く行われている。 生成AIを含むAIのインパクトは非常に大きいと言える。 国内企業は生成AIに前向きで、自動化や効率化の恩恵を期待している。しかし、AIの重要性に対する見方は経営陣と事業部門で異なる。多くの企業がAIの重要性を理解しつつ、その活用方法やサービス展開を検討中だ。 より効率的な業務につながるハイブリッドワークの未来、企業におけるAIの価値、そしてそれらを組み合わせることで、競争市場をリードする企業の能力をどのように高めることができるのか、レノボ・ジャパン合同会社製品企画部マネージャー兼ワークスタイル・エバンジェリストの元嶋亮太氏に話を聞いた。 是非、レノボのエバンジェリスト、元嶋氏との動画インタビューをご覧ください。 > allowfullscreen> AIを活用したハイブリッドワーク成功の秘訣について、元嶋氏との個別インタビューの記事も合わせてこちらをご覧ください。
-
Big Data Career Notes for October 2024
It’s that time of month again–time for Big Data Career Notes, a monthly feature where we keep you up-to-date on the latest career developments for individuals in the big data community. Whether it’s a promotion, new company hire, or even an accolade, we’ve got the details. Check in each month for an updated list and…
-
Meta AI Releases LongVU: A Multimodal Large Language Model that can Address the Significant Challenge of Long Video Understanding
Understanding and analyzing long videos has been a significant challenge in AI, primarily due to the vast amount of data and computational resources required. Traditional Multimodal Large Language Models (MLLMs) struggle to process extensive video content because of limited context length. This challenge is especially evident with hour-long videos, which need hundreds of thousands of…